Brauer Groups Part II
Table of Contents
Continuing from Part I, we delve deeper into Brauer groups. In this post, we'll compute examples of Brauer groups of fields, relate them to cohomology, discuss period-index, and prove several relevant theorems including Skolem–Noether theorem and Wedderburn's theorem. We will also generalize the Brauer group construction to rings. These will correspond generally to ⟦cite:Poo17⟧ from chapters 2 and 3, but I will not follow them precisely, and will add some additional details and proofs. We follow previous notation, and fix $K$ a field.
Cohomological Interpretation of the Brauer Group
For each $r\ge 1$, there is injection
$$\frac{\{\textrm{Azumaya }K\textrm{-algebras of dimension }r^2\}}{\textrm{isomorphism}}\hookrightarrow \mathrm{H}^1(K,\mathrm{PGL}_r)$$There is an isomorphism of abelian groups
$$\mathrm{Br}(K)\xrightarrow{\sim} \mathrm{H}^2(K,\mathbb{G}_m)$$Taking cohomology of the short exact sequence of algebraic groups over $K^{\mathrm{sep}}$
$$1\to \mathbb{G}_m\to \mathrm{GL}_r\to \mathrm{PGL}_r\to 1$$gives a long exact sequence
$$\cdots \to \mathrm{H}^1(K,\mathrm{GL}_r)\to \mathrm{H}^1(K,\mathrm{PGL}_r)\to \mathrm{H}^2(K,\mathbb{G}_m)\to \mathrm{H}^2(K,\mathrm{GL}_r)\to \cdots$$Composing the injection from ⟦ref:prop-azumaya-to-pglr⟧ with the map $\mathrm{H}^1(K,\mathrm{PGL}_r)\to \mathrm{H}^2(K,\mathbb{G}_m)$, we get a map $\mathrm{Br}(K)\rightarrow \mathrm{H}^2(K,\mathbb{G}_m)$. To see that this map is injective note that by Hilbert's Theorem 90, $\mathrm{H}^1(K,\mathrm{GL}_r)=0$. To see that it is surjective, given a cohomology class $\alpha\in \mathrm{H}^2(K,\mathbb{G}_m)$, we construct an Azumaya algebra $A$ such that its image in $\mathrm{H}^2(K,\mathbb{G}_m)$ is $\alpha$. First note that we can reduce to the case of a finite Galois extension $L\mid K$, where we only need to consider a class in $\mathrm{H}^2(\mathrm{Gal}(L\mid K),L^\times)$ that inflates to $\alpha$. Choose a representative $2$-cocycle $c:\mathrm{Gal}(L\mid K)^2\to L^\times$, i.e. $c(\sigma, \tau) c(\sigma \tau, \rho)=\sigma(c(\tau, \rho)) c(\sigma, \tau \rho)$ for all $\sigma, \tau, \rho\in \mathrm{Gal}(L\mid K)$, we define the crossed product algebra $A=\bigoplus_{\sigma\in \mathrm{Gal}(L\mid K)}Lu_{\sigma}$ with multiplication defined by $u_{\sigma}\ell=\sigma(\ell)u_{\sigma}$ and $u_{\sigma}u_{\tau}=c(\sigma,\tau)u_{\sigma\tau}$, which one checks is a central simple algebra over $K$ that splits over $L$. One can check that the image of $A$ in $\mathrm{H}^2(K,\mathbb{G}_m)$ is precisely $\alpha$. The map is additive by routine check.
Examples of Brauer Groups of Fields
Let $K$ be a field, then
- If $\mathrm{char}(K)\nmid n$, then $\mathrm H^1(K, \mu_n)=K^\times/K^{\times n}$.
- If $\mathrm{char}(K)\nmid n$, then $\mathrm H^2(K, \mu_n)\cong \mathrm{Br}(K)\left[n\right]$.
- For any Galois extension $L\mid K$, we have $\mathrm H^2(\mathrm{Gal}(L\mid K), L^\times)=\mathrm{Ker}(\mathrm{Br}(K)\rightarrow\mathrm{Br}(L))$.
- Take short exact sequence $$1\to \mu_n\to \mathbb{G}_m\xrightarrow{(\cdot)^n} \mathbb{G}_m\to 1$$ and take cohomology to get long exact sequence $$\cdots \to \mathrm H^0(K, \mathbb{G}_m)\xrightarrow{(\cdot)^n} \mathrm H^0(K, \mathbb{G}_m)\to \mathrm H^1(K, \mu_n)\to \mathrm H^1(K, \mathbb{G}_m)\to \cdots$$ then use Hilbert's Theorem 90 to conclude.
- Same idea as above, taking the same short exact sequence and taking cohomology to get long exact sequence $$\cdots \to \mathrm H^1(K, \mathbb{G}_m)\xrightarrow{(\cdot)^n} \mathrm H^1(K, \mathbb{G}_m)\to \mathrm H^2(K, \mu_n)\to \mathrm H^2(K, \mathbb{G}_m)\xrightarrow{(\cdot)^n} \mathrm H^2(K, \mathbb{G}_m) \to \cdots$$ then use Hilbert's Theorem 90 to conclude.
- Skipped
Here are some examples of Brauer groups of fields:
- If $K$ is algebraically closed, $\mathrm{Br}(K)=0$,
- If $K$ is finite, then $\mathrm{Br}(K)=0$,
- If $K=\mathbb{R}$, then $\mathrm{Br}(\mathbb{R})\cong \mathbb{Z}/2\mathbb{Z}$,
- If $K$ is a non-archimedean local field, then $\mathrm{Br}(K)\cong \mathbb{Q}/\mathbb{Z}$,
- (Albert–Brauer–Hasse–Noether) If $K$ is a global field, then there is an exact sequence $$0\to \mathrm{Br}(K)\to \bigoplus_v \mathrm{Br}(K_v)\xrightarrow{\sum \mathrm{inv}_v} \mathbb{Q}/\mathbb{Z}\to 0$$ where the sum is over all places $v$ of $K$.
- By ⟦ref:thm-brauer-cohomology⟧, $\mathrm{Br}(K)\cong \mathrm{H}^2(K,\mathbb{G}_m)$. Since $K$ is algebraically closed, $\mathrm{Gal}(K^{\mathrm{sep}}\mid K)=0$, so $\mathrm{H}^2(K,\mathbb{G}_m)=0$.
- Any central division algebra over a finite field is finite, hence by Wedderburn’s little theorem is a field, hence every Azumaya algebra over a finite field is some $\mathrm M_n(K)\sim K$, so the Brauer group is trivial.
- The only Azumaya algebras over $\mathbb{R}$ are $\mathbb{R}$ and the Hamiltonian quaternions $\mathbb{H}$ so the Brauer group is $\mathbb{Z}/2\mathbb{Z}$.
- It suffice to show for each $n\ge 1$ we have $\mathrm{Br}(K)[n]\cong \mathbb{Z}/n\mathbb{Z}$, so that $$\mathrm{Br}(K)=\lim_{\longrightarrow}\mathrm{Br}(K)[n]\cong\lim_{\longrightarrow}\mathbb{Z}/n\mathbb{Z}=\lim_{\longrightarrow} \frac{1}{n}\mathbb Z/\mathbb Z=\mathbb Q/\mathbb Z$$ By ⟦ref:prop-brauer-cohomology-mun⟧ part (ii), we have $\mathrm{Br}(K)[n]\cong \mathrm H^2(K, \mu_n)$. By Tate local duality from local class field theory, we have $\mathrm H^2(K, \mu_n)\cong \mathbb{Z}/n\mathbb{Z}$ as required.
- Skipped
If $K$ is a $C_r$ field, $L\mid K$ an extension,
- If $L$ is algebraic over $K$, then $L$ is $C_r$.
- If $L$ is transcendental of trasncendence degree $s$ over $K$, then then $L$ is $C_{r+s}$.
Period and Index
We reduce to central division algebras. Let $D$ be a central division algebra over $K$ of index $n$. A basic result in the theory of central simple algebras is that $D$ contains a maximal subfield $L$ that is a degree $n$ separable extension of $K$ that splits $D$, i.e. $D\otimes_K L\cong \mathrm M_n(L)$. Thus the class of $D$ in $\mathrm{Br}(K)$ maps to zero in $\mathrm{Br}(L)$, by the restriction-corestriction identity
$$\mathrm{cor}_{L\mid K}\circ \mathrm{res}_{L\mid K}([D])=[L:K][D]=n[D]$$we see that the period of $D$ divides $n$, as required.
Cyclic Algebras
Let $L\mid K$ be a degree $n$ cyclic extension, $a\in K^\times$ and $\sigma$ a generator of $\mathrm{Gal}(L\mid K)$. Let $L[x]_{\sigma}$ be the twisted polynomial ring with relation $x\ell=\sigma(\ell)x$ for all $\ell\in L$. Let $A=L[x]_{\sigma}/(x^n - a)$. It is straightforward to check that $A$ is a central simple algebra over $K$ of dimension $n^2$ that splits over $L$. Azumaya algebras of this form are called cyclic algebras. Generally, we have the following.
Cyclic algebra $(a,\chi)$ have cohomological interpretations. Suppose $\mathrm{char}(K)\nmid n$, then $a$ can be mapped into $K^\times/K^{\times n}\cong \mathrm H^1(K,\mu_n)$ and $\chi\in \mathrm{Hom}(\mathrm G_K,\mathbb Z/n\mathbb Z)=\mathrm H^1(K,\mathbb Z/n\mathbb Z)$. Under the cup product
$$\mathrm H^1(K,\mu_n)\times \mathrm H^1(K,\mathbb Z/n\mathbb Z)\to \mathrm H^2(K,\mu_n)\cong \mathrm{Br}(K)[n]$$the pair $(a,\chi)$ maps to an element in $\mathrm H^2(K,\mu_n)\cong \mathrm{Br}(K)[n]$ that corresponds to the cyclic algebra $(\chi,a)$ up to a sign.
Brauer Groups of Rings
Let $R$ be a ring, a not necessarily commutative $R$-algebra $A$ is an Azumaya algebra over $R$ if
- $A$ is finitely generated projective as an $R$-module,
- the natural map $A\otimes_R A^{\mathrm{op}}\to \mathrm{End}_R(A)$ by sending $a\otimes b^{\mathrm{op}}\mapsto (x\mapsto axb)$ is an isomorphism of $R$-algebras.
References
- [Poo17]Bjorn Poonen. Rational Points on Varieties. American Mathematical Society. 2017.